Ein Gespür für Infrarotlicht
19.01.2016
Forscher um LMU-Professor Ferenc Krausz haben ein Messsystem für Lichtwellen im Nahen Infrarotbereich entwickelt.
19.01.2016
Forscher um LMU-Professor Ferenc Krausz haben ein Messsystem für Lichtwellen im Nahen Infrarotbereich entwickelt.
Wer den Mikrokosmos erforschen möchte, benötigt eine exakte Kontrolle über Laserlicht. Erst mit seiner Hilfe ist es möglich, Elektronenbewegungen zu erkunden und ihr Verhalten zu beeinflussen. Jetzt haben Physiker unter der Leitung von Ferenc Krausz, Inhaber des Lehrstuhls für Experimentalphysik der LMU und Direktor am Max-Planck-Institut für Quantenoptik (MPQ), ein Messsystem entwickelt, mit dem sie Laserpulse mit großer Bandbreite im Infrarotspektrum des Lichts exakt bestimmen können. Im Infrarot-Wellenlängenbereich bis zu 1200 Nanometern war dies bis jetzt nur mit aufwendigen Vakuumsystemen möglich. Das neue System kann für die präzise Erzeugung von Attosekunden langen Lichtblitzen zur Erforschung von Elektronenbewegungen eingesetzt werden, genauso wie zur kontrollierten Mobilisation von Elektronen in Kristallen. Über ihre Ergebnisse berichten sie aktuell in der Fachzeitschrift Nature Photonics.
Aufschluss über Phänomene im Inneren von Kristallen
Licht ist ein nur schwer zu fassendes Medium. Mit knapp 300.000 Kilometern pro Sekunde ist es nicht nur sehr schnell, auch sein elektromagnetisches Feld hat es in sich: Es schwingt rund eine Million Milliarden Mal pro Sekunde. In den letzten Jahren gelingt es dennoch immer besser, diese Schwingungen exakt zu bestimmen und sie sogar zu beeinflussen. Damit wird Licht zu einem ultraschnellen Werkzeug zur Erkundung des Mikrokosmos.
Infrarote Laserpulse mit wenigen Femtosekunden Dauer, dienen in diesem Zusammenhang einerseits dazu, eine verlässliche Lichtquelle für die Erzeugung von Attosekunden-Lichtblitzen zu schaffen. Mit Attosekunden langen Lichtblitzen ist man in der Lage, Elektronen zu „fotografieren“. Zum anderen kann man mit Infrarot-Laserpulsen Elektronenbewegungen in Molekülen und Kristallen anregen und damit ihre elektronischen Eigenschaften innerhalb von Femtosekunden verändern. Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde, eine Attosekunde ist noch tausend Mal kürzer.
Je besser man die Beschaffenheit der Infrarot-Laserpulse kennt, desto genauer können Experimente durchgeführt werden, die Aufschluss über Phänomene im Inneren von Kristallen geben. Jetzt haben Laserphysiker um Dr. Nicholas Karpowicz und Sabine Keiber vom MPQ und der LMU ein Messsystem entwickelt, mit dem man den genauen Schwingungsverlauf von Lichtwellen im infraroten Bereich des Spektrums, bis zu 1200 Nanometer Wellenlänge, analysieren kann. In diesem Messsystem tastet ein weiterer, fünf Femtosekunden langer Laserpuls das elektromagnetische Feld des Infrarotpulses ab. „Ein Femtosekunden langer Infrarot-Laserpuls besteht aus synchronisierten Wellenschwingungen des Lichts und damit des elektromagnetischen Feldes“, erklärt Nicholas Karpowicz. „Mit unserer Technik sind wir nun in der Lage nicht nur das elektromagnetische Feld des Lichtpulses in seiner Gesamtheit zu bestimmen, sondern auch das Feld jeder einzelnen Schwingung innerhalb des Pulses zu analysieren.“ In dem Wellenlängenbereich bis zu 1200 Nanometer war eine so exakte Analyse bis heute nur unter sehr aufwendigen Bedingungen möglich.
Mit der neu erworbenen Kontrolle über die nahen Infrarotpulse erweitern sich nun die Möglichkeiten zur Erkundung des Mikrokosmos. Ebenso haben die Forscher mit ihrer Analysemethode eine Möglichkeit geschaffen, die technologische Weiterentwicklung im Bereich der Datenübertragung mit Licht zu unterstützen. Da für die Übertragung von Informationen häufig eine Lichtwellenlänge von rund 1500 Nanometern benutzt wird, bietet sich nun die Chance, diese durch exakte Messtechnik noch effizienter zu gestalten. Und auch in der Grundlagenforschung kann das System eingesetzt werden. Das Messsystem kann die zeitaufgelöste Infrarotspektroskopie zur Untersuchung von biologischen und chemischen Proben verbessern.
(Nature Photonics 2016, doi: 10.1038/NHPHOTON.2015.269)