In der Schaltzentrale des Erbguts
09.01.2015
Epigenetische Signale steuern, wann welches Gen aktiv ist. Eine neue Methode ermöglicht erstmals die systematische Charakterisierung der entsprechenden Schalter.
09.01.2015
Epigenetische Signale steuern, wann welches Gen aktiv ist. Eine neue Methode ermöglicht erstmals die systematische Charakterisierung der entsprechenden Schalter.
Jede Körperzelle eines Organismus enthält im Erbmolekül DNA ein identisches genetisches Inventar. Allerdings sind in jeder Zelle nur die Gene aktiv, die von der Zelle benötigt werden – in Muskelzellen etwa läuft ein anderes Programm ab als in Nervenzellen. Welche Gene wann und wo aktiv sind, wird über chemische Modifizierungen reguliert – sogenannte epigenetische Signalwege, mit denen die Zelle auch auf Umwelteinflüsse reagieren kann. „Störungen in diesen Signalwegen können unter anderem Krankheiten wie Krebs und Alzheimer auslösen“, sagt der LMU-Biologe Professor Peter Becker, dem es nun mit seinem Doktoranden Christian Feller gelang, alle an einem wichtigen epigenetischen Signalweg – der sogenannten Histon-Acetylierung – beteiligten Enzyme zu charakterisieren. Darüber berichten die Wissenschaftler im renommierten Journal Molecular Cell.
Die DNA ist im Zellkern dicht gepackt und in einen schützenden Mantel aus Histonproteinen eingebettet. Diese Histonproteine können durch Acetylierungen – d.h. durch Anheften von Acetylgruppen – chemisch modifiziert werden, sodass bestimmte Bereiche der DNA zugänglich und die entsprechenden Gene aktivierbar werden. „Obwohl die Histon-Acetylierung schon lange bekannt ist, wissen wir aber noch wenig darüber, an welchen Stellen entlang der Histonmoleküle Acetylierungen auftreten, wie sich verschiedene Acetylierungen zu sogenannten „Motiven“ kombinieren und wie häufig diese im Zellkern vorkommen“, erklärt Becker. Unterschiedliche Acetylierungsmotive regulieren vermutlich verschiedene epigenetische Signalwege.
Spezialisten für die Histon-Acetylierung
Vermittelt wird die Histon-Acetylierung von zahlreichen spezialisierten Acetylierungs-Enzymen, von denen vermutet wird, dass jedes Enzym nur für spezielle Acetylierungsmotive zuständig ist. Menschliche Zellen enthalten mehr als 60 potenzielle Acetylierungs-Enzyme und sogar die Fruchtfliege besitzt über 40 Acetylierungs-Enzyme, von denen die meisten den menschlichen Varianten vermutlich sehr ähnlich sind. „Um jedem Enzym das entsprechende Acetylierungsmotiv zuordnen zu können, fehlten bisher die technischen Möglichkeiten“, sagt Becker.
Um dieses Problem zu lösen, entwickelten die Wissenschaftler nun eine proteomische Methode weiter, die Histonmodifikationen und deren Kombinationen zuverlässiger quantifiziert. „Der Schlüssel zum Erfolg war die enge Zusammenarbeit mit den Proteomikexperten Axel Imhof und Ignasi Fornè, die es uns erlaubte, ein optimiertes massenspektrometrisches Verfahren zu entwickeln, das viele Acetylierungsmotive in der Zelle aufdecken kann“, sagt Feller, der Erstautor der Studie. Mithilfe der neuen Methode gelang es dem Forscherteam, systematisch alle Acetylierungs-Enzyme der Fruchtfliege zu charakterisieren. Indem sie diese Enzyme nacheinander aus Fliegenzellen genetisch entfernten, konnten sie aufklären, welches Acetylierungsmotiv jedes Enzym ansteuert. Dabei zeigte sich auch, dass benachbarte Acetylierungen und andere chemische Modifikationen die Zielstruktur der Acetylierungs-Enzyme beeinflussen.
Schalter mit Backup
„Unser überraschendster Fund war, dass die Entfernung von Acetylierungs-Enzymen häufig dazu führt, dass an benachbarten Stellen neue Acetylierungen hinzukommen, sodass die Summe aller Acetylierungen am Ende oft sehr ähnlich ist“, sagt Feller. Dass biologische Systeme in der Lage sind, fehlende Komponenten zumindest kurzzeitig zu ersetzen, ist ein bekanntes Phänomen in der Biologie. „Das große Ausmaß für das Histonacetylierungssystem war jedoch sehr überraschend“, ergänzt Becker, „und illustriert die komplexe Verschaltungsweise epigenetischer Signalwege“.
Die Ergebnisse von Beckers Team legen den Grundstein für weitere Untersuchungen: Wie stark ähneln die Ziele einzelner Acetylierungs-Enzyme aus der Fruchtfliege denen in menschlichen Zellen? Wie weit ist das Phänomen der ausgleichenden Acetylierung verbreitet und welche Funktion hat es? Und letztlich, wie können diese und weiterführende Studien zu effektiveren Inhibitoren von Acetylierungs-Enzymen in der Krebstherapie entwickelt werden? Diesen Fragen wollen die Wissenschaftler in zukünftigen Studien nachgehen.(Molecular Cell 2015) göd