Systematic Botany & Mycology (Gottschling)

Department / Institute
Faculty of Biology
Subject area
Systematic Botany & Mycology
Project title
Evolutionary origin and distribution of Bavarian freshwater dinophytes
Name of supervisor
Prof. Dr. Marc Gottschling
Number of open positions
Language requirements
Proficiency in English
Academic requirements
4-year Bachelor's plus Master's Degree; at the time of application, the last final exam should have taken place during the past 4 years.
Project time plan
Full Doctoral Study Model: 36 or 48 months

Project description

Precise distribution data are necessary to explain the historical biogeography of organisms and to uncover the evolutionary mechanisms that have shaped their diversification, but also to predict future developments in a drastically changing world. The distribution of microorganisms, such as the ecologically and economically important group of unicellular dinophytes, reflects their dispersal ability and potential to establish new populations. Data on the distribution of these organisms, however, are both sparse and outdated. Molecular methods (including high throughput sequencing) have become the tool of choice to resolve identification issues. The successful candidate will inventory freshwater dinophyte species compositions of some 50 lakes in Bavaria, using rRNA amplicon sequencing. Bavaria has 382 lakes >1 ha that show a broad range of environmental parameters. Most lakes originated after the last ice age about 10-12.000 years ago. The group has multiple annual dinophyte morphology-based microscopic records (54 of them from research at the LMU Limnological Research Station Seeon). Phylogenies show that freshwater dinophytes segregate into distantly related lineages, and their molecular diversity is much better explored than their geographic occurrence. Dinophyte communities and their correlations with environmental parameters will be analysed with modern multivariate statistical methods, and the Bavarian ribotypes will be placed in a phylogenetic context using maximum likelihood methods. Bavarian dinophytes will also be considered in the European context using GenBank and the in-group sequence database of multiple spatially referenced accessions. The project will result in better knowledge about the spatial distribution and phylogenetic diversity of German dinophytes, will provide the first modern distribution maps for key species and is the basis for assessing the impact of climate change and acidification on freshwater dinophytes.

What are you looking for?